Laboratory Evaluation:
Wax Additives in Warm-Mix Asphalt Binder

ETG WARM MIX TASK GROUP:
GAYLON BAUMGARDNER
GAYLE KING
GERALD REINKE
MATT CORRIGAN
CHRIS ABADIE
Objective

Evaluate the effect of wax additives on physical properties and characteristics of asphalt binders and their subsequent performance in mixtures.
Materials

- Asphalt – One (1)
 - Lion Oil PG64-22 Eldorado, AR Refinery (Saudi)

- Wax Additives – Nine (9)
 - Non-Paraffin Wax Additives

- Aggregates
 - Vulcan Barin Quarry Granite, Columbus, GA (Aggregate used on the NCAT Test Track)

- Mix Design
 - 12.5mm Dense Graded SuperPave™ Gyratory
 - ~5.5% Binder
 - ~7.0% Air Voids
Paraffin and Non-Paraffin Waxes

Paraffin Wax
Size of molecule \(\text{< } C_{45} \)
Melting point \(\text{< } 70 \degree \text{C} \)

Non-Paraffin Wax
Size of molecule \(\text{> } C_{45} \)
Melting point \(\text{> } 70 \degree \text{C} \)

- **natural waxes**
 - animal (e.g. beeswax)
 - vegetable (e.g. Carnauba wax)

- **modified natural waxes**
 - brown coal-derivative
 - mineral oil-derivative

- **partial synthetic waxes**
 - acid waxes
 - ester waxes
 - amid waxes
 - alcohol waxes

- **full synthetic waxes**
 - Fischer-Tropsch-waxes
 - polyethylene-waxes
Selected Additives

- **Paraffin Waxes:**
 - Microcrystalline
 - Astra 3816 Refined Paraffin
- **Non-Paraffin Waxes:**
 - Modified Natural
 - Romonta Normal - Montan
 - Romonta Asphaltan A
 - Romonta Asphaltan B
 - Partial Synthetic
 - Clariant Licomont BS100 – N,N’-ethylenebisstearamide
 - Luxco Pitch – stearic acid pitch
 - Ester Wax - TBD
 - Synthetic
 - Sasobit – Fischer-Tropsch
 - Allied - Polyethylene
Experimental

- Proposed Testing Completed Cooperatively

- Paragon Technical Services, Inc. (PTSi)
- Mathy Technology and Engineering, Inc. (MTE)
- Anderson Asphalt (Dr. Dave Anderson)
- Western Research Institute (WRI)
- Louisiana State University (LSU)
- Federal Highways (FHWA)
- Kraton Polymers (KP)
Experimental – Additive Testing

- **Fourier Transform Infra-Red Spectroscopy (FTIR)** – WRI
- **Gel Permeation Chromatography (GPC)** – WRI/PTSi/KP
 - High Temp GPC – KP
- **Glass Transition (Tg)**
 - Modulated Differential Scanning Calorimetry (MDSC) – WRI/MTE
- **Branching**
 - Nuclear Magnetic Resonance (NMR) – WRI
 - Atomic Force Microscopy (AFM) - WRI
 - Mass Spectroscopy (MS) – WRI
 - X-Ray - LSU
Fourier Transform Infra-Red Spectroscopy (FTIR)
Ten (10) Binders (Control PG64-22 and Nine (9) Wax Modified Binders

Note: Testing other than Tribo-Rheometry and Binder True Grade to be Performed on PAV Aged Binders

- Master Curve Development (DSR) – PTSi
- SuperPave™ True Grade (Through DTT) – PTSi
- Tribo-Rheometry – PTSi/MTE
- Physical Hardening (32 days saturation at -12°C) Bending Beam Rheometry (BBR) - PTSi
- Testing at 1,2,4,8,16 and 32 Days Concurrent with Binder
- Multi-Step Creep Recovery (MSCR) – FHWA
- Binder Stress Sweep Fatigue (Bahia UW Method) – PTSi/MTE
Experimental – Binder Testing (Contd.)

- Ten (10) Binders (Control PG64-22 and Nine (9) Wax Modified Binders

 Note: Testing other than Tribo-Rheometry and Binder True Grade to be Performed on PAV Aged Binders

- Glass Transition Tg
- Modulated DSC (MDSC) – WRI/MTE/Anderson Asphalt
- Dilatometric Analysis - Anderson Asphalt
- Fracture Testing – Anderson Asphalt
- Atomic Force Microscopy (AFM) - WRI
- Solid State NMR – (WRI
- X-Ray – LSU
- High Pressure Liquid Chromatography/Gel Permeation Chromatography/Mass Spectroscopy – (HPLC/GPC/MS) – WRI/LSU
Master Curve Development

![Diagram showing temperature and phase lag relationship with G* Pa values]
Tribo-Rheometry

COMPARE NEAT PG 58-28 TESTED AT 3 TEMPERATURES, 125°C, 100°C, & 90°C-GAP 50 µm

viscosity (Pas)

normal force (N)

velocity (rad/s)
Experimental – Mixture Testing

- Ten (10) Mixtures (Control and Nine (9) Modified)

 Dense Graded SuperPave™ Gyratory Specimens

- Physical Hardening (32 days saturation at -12°C) Bending Beam Rheometry (Marasteanu UM Method)(BBR) - PTTi
 - Testing at 1,2,4,8,16 and 32 Days Concurrent with Binder
- Sand Cylinder Fatigue (SCF) – MTE
- Glass Transition (Tg) (MTE Method) – MTE
- Fracture Testing – Anderson Asphalt
Physical Hardening - BBR

Zofka, AAPT “Simple Method”, 7/22
Questions?

What’s Over the Hill for Warm Mix?