California Warm-Mix Asphalt HVS Study

David Jones
University of California Pavement Research Center

Warm-mix asphalt Technical Working Group
Baltimore, 12/13/07
Acknowledgements

• Caltrans
 - Terrie Bressette, Cathrina Barros, Glenn Johnson

• Graniterock
 - Mike Cook

• Technology providers
 - Advera - Annette Smith
 - Evotherm - Everett Crews
 - Sasobit - John Shaw, Larry Michael
Summary

• Objectives
• Study questions
• Experiment design
• Experiment layout
• Pavement and mix design
• Test track construction
• HVS overview
• Testing plan
• Test summary
• Deliverables
Objectives

• Determine whether the addition of additives to reduce the production and construction temperatures of asphalt concrete influences performance

• Additives tested:
 - Advera
 - Evotherm
 - Sasobit
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS overview
- Testing plan
- Test summary
- Deliverables
Study questions

• What is the comparative energy usage during mix preparation?
• Can satisfactory density be achieved at lower temperatures?
• What is the optimal temperature range for achieving compaction requirements?
• What are the cost implications?
• Does the addition of the additive influence rutting performance of the mix?
Study questions

• Is the treated mix more susceptible to moisture sensitivity given that the aggregate is heated to lower temperatures?
• Does the addition of the additive influence fatigue performance?
• Does the addition of the additive influence the performance of the mix in any other way?
• If the experiment is extended to rubberized and open-graded mixes, are the benefits of adding the additives to these mixes the same as for conventional mixes?
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS overview
- Testing plan
- Test summary
- Deliverables
Experiment design

- **Phase I**
 - Early rutting potential at elevated temperatures
 - FMFC Laboratory testing
 - Shear
 - Fatigue beam (wet & dry)
 - Hamburg Wheel Test
- **Phase II**
 - Moisture sensitivity
 - LMLC Laboratory testing
- **Phase III**
 - Aged rutting?
- **Phase IV**
 - Fatigue?
Experiment layout

- **Location**
 - Graniterock AR Wilson Quarry, Aromas, CA

- **Test track**
 - 80m x 8m

- **Test sections**
 - 4 sections
 - 40m x 4m
 - 3 or 4 HVS experiments
Experiment location

Graniterock quarry and plant
Experiment location

- Quarry operations
- Proposed site
- Quarry pit
- Access road
- Haul road for early opening assessment
- AC Plant
Experiment location

- Preferred site - 80mx8m
- Quarry operations access road (sealed)
- Shed roof will require gutter
- Slope direction
Before construction
Summary

• Objectives
• Study questions
• Experiment design
• Experiment layout
• Pavement and mix design
• Test track construction
• HVS overview
• Testing plan
• Test summary
• Deliverables
Pavement and mix design

Layer: Bedrock
Thickness: Semi-infinite
Modulus: >3,000 MPa

Layer: Existing Subbase
Thickness: 250 mm
Modulus: 400 MPa

Layer: Imported Class 2 Aggregate Base
Thickness: 300 mm
Modulus: 150 MPa

Layer: DGAC
Thickness: 2 x 60 mm = 120 mm
Modulus: 1,000 MPa
Pavement and mix design

• Mix design
 - “Standard” Graniterock mix design
 - Mix design not changed for additives
 - PG64-16 binder
 - No anti-strip added

• Control mix temperature
 - 155°C (310°F)

• Warm-mix temperature
 - 120°C (250°F)
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS overview
- Testing plan
- Test summary
- Deliverables
Test track construction

- Base
 - One-day construction
 - Some over watering
 - QC
 - Density
 - FWD testing
 - LWD testing
 - Moisture sensors installed
Base construction
Base construction
Base construction
Base construction
Base construction
Test track construction

- **Surfacing**
 - All mix produced first
 - 150 tons per mix
 - Stored in silos
 - 1st 25 tons “wasted”

- **Process**
 - Prime coat
 - 4 x lower lifts placed
 - Tack coat
 - 4 x upper lifts placed

- **Strain gages installed on base**
Test track construction

• Lab compact specimens
 - Mix sampled during construction
 - Slabs compacted with rolling wheel
 - Cut and cored for testing

• Field compact specimens
 - Trench on section
 - 400x400mm slabs
 - Cut and cored for testing
Test track construction
Test track construction
Test track construction - QC

- **Base**
 - Density & moisture content
 - Stiffness (FWD, LWD)
- **Mix**
 - Temperature
 - Binder content
 - Air void content
 - Moisture content
 - Grading
 - Density
- **Test track**
 - Temperature
 - Density
 - Thickness
 - Stiffness (FWD)
 - Skid resistance
Test track construction - QC

Control - Average 135°C (275°F)
WMA - 105°C to 117°C (220°F to 240°F)
Test track construction
Test track construction - QC
Test track construction - QC
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS overview
- Testing plan
- Test summary
- Deliverables
HVS overview

- 1 of 2 Caltrans machines
- 8 worldwide + 2
- Designed and built in S. Africa
- Capability
 - 30 - 205kN (7-67kps)
 - 1,000 load applications/hour
 - 13km/h wheel speed
 - Uni/bidirectional
 - Channelized/wander
 - Dynamic loading
 - Dual, wide-based, aircraft tires
 - Environmental chamber
 - Mobile and self-propelled
HVS instrumentation

• Load calibration
 - WIM, hydraulic sensor
• Temperature
 - Thermocouples/temperature buttons
• Deflection
 - Road surface deflectometer (RSD)
 - Multi-depth deflectometer (MDD)
 - Joint deflectometer (JDMD)
• Permanent deformation
 - Laser profilometer
 - Multi-depth deflectometer (MDD)
• Tire contact stress
 - 3-d load cell
Summary

- Objectives
- Study questions
- Experiment design
- Experiment layout
- Pavement and mix design
- Test track construction
- HVS overview
- Testing plan
- Test summary
- Deliverables
Phase I testing plan

- Pavement temp
 - 50°C at 50mm (122°F at 2in)
 - 55°C at 50mm after 155,000 reps
- Load
 - 40kN (9,000 lbs)
 - 60kN after 185,000 reps
- Tires
 - Dual, 720kPa (104PSI)
- Traffic
 - Unidirectional, channelized
- Failure criteria
 - 12.5mm (½ in) rut
Summary

• Objectives
• Study questions
• Experiment design
• Experiment layout
• Pavement and mix design
• Test track construction
• HVS overview
• Testing plan
• Test summary
• Deliverables
Phase I HVS test summary

• Control section
 - Test complete
 - 12.5 mm rut after 195k reps
 - Load at 60kN, temp at 55°C
 - 240,000 ESALs

• Advera
 - 100,000 reps applied to date

• Evotherm, Sasobit

• Results will be released on completion of all testing
Phase I HVS test
Control - 195,000 reps
Control - rut progression

- Maximum Rut (mm) vs. Number of Load Repetitions (Million)
- Graph shows increasing rut depth with increasing repetitions
- Line represents the progression of rut depth over time
- Data points indicate variability in rut depth with repetitions
- 600FD line highlights a specific trend or condition
Control - profile

Average Profile for Section 600FD Up to Repetiton 187000

Transverse Distance (mm)

Average Profile (mm)

-10 -8 -6 -4 -2 0 2 4

-1000 -500 0 500 1000 1500

- Repetition=155000
- Repetition=185100
- Repetition=185200
- Repetition=185500
- Repetition=186000
- Repetition=187000
Control - contour plot

Section 600FD, Repetition = 0.195 Million

Transverse Distance (mm)

Stations

Color Map for Profilometer Reading (mm)

-10.5 -8.3 -6.1 -3.9 -1.8 0.4 2.6 4.8
Phase I test summary

- Laboratory testing
 - Fatigue beam, shear, and HWT specimen prep
 - Testing in progress
 - Results released on completion of all testing
Summary

• Objectives
• Study questions
• Experiment design
• Experiment layout
• Pavement and mix design
• Test track construction
• HVS overview
• Testing plan
• Test summary
• Deliverables
Deliverables

- Detailed work plan
- Construction report
- Detailed 1st level analysis reports for each phase
- Laboratory testing report
- Detailed 2nd level analysis report
- Summary report